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Two-dimensional simulations of gas cavity responses to both weak shocks ( p  d 
30 MPa) and strong shocks ( p  ranging from 500 to 2000 MPa) are performed using a 
finite volume method. An artificial viscosity to capture the shock and a simple, stable, 
and adaptive mesh generation technique have been developed for the computations. 
The details of the shock propagation, rarefaction, transmission and bubble wall 
motions are obtained from the numerical computations. A weak shock is defined in 
the present context as one that does not cause liquid jet formation upon impact with 
the bubble. For this case, a large pressure is created within the gas upon collapse 
due to rapid compression of the gas, ultimately causing the re-expansion of the 
bubble. The bubble collapse and re-expansion time predicted by this model agree well 
with spherically symmetric computations. When impacted by strong shock waves, the 
bubble will collapse and a liquid jet is formed that propagates through the bubble to 
the opposite bubble wall. Jet speeds as high as 2000 m s-' are predicted by this model. 

1. Introduction 
An understanding of the response of a gas cavity in a fluid to a time-dependent pres- 

sure wave is important in a wide range of situations including (1)  cavitation damage 
to human tissues during diagnostic ultrasound or lithotripsy (Delius et al. 1987, 1988; 
Bailey et al. 1994; and Carstensen et al. 1990); (2) fragmentation of gallstones or kid- 
ney stones by shock waves (Sass et al. 1991, Vakil & Everbach 1991; Gracewski et al. 
1993 and Crum 1988); (3) production of 'hot spots' that cause ignition (Madar 1965); 
and (4) solid erosion (Kornfeld & Suvorov 1944; and Hansson & Morch 1980). The 
cavities may collapse nearly symmetrically, causing very high pressures within the 
gas. On the other hand, if the collapse becomes non-symmetric, liquid jets can be 
produced that can lead to pitting and erosion of nearby solid surfaces. 

1.1. Analysis of spherical bubble collapse 
The classical analysis of Rayleigh (1917) considers the collapse of an isolated, empty 
spherical cavity of initial radius ro, in a liquid with density p, under an instantaneously 
applied constant hydrostatic pressure po(t) = pmH(t), where H ( t )  is the unit step 
function. Assuming incompressible and inviscid behaviour of the liquid, Rayleigh's 
analysis gives the time for the cavity to collapse as t m 0.91468r0(p/p~)'/~, which is 
reasonably accurate. However the predicted collapse pressure tends to infinity as the 
cavity radius approaches zero. In practice, a cavity cannot be considered as empty, 
and thermal effects and liquid compressibility should be considered. 

After Rayleigh, many researchers investigated the behaviour of a gas cavity in 
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response to applied pressure fields, and many models for bubble dynamics were 
proposed that assume spherically symmetric collapse of the bubble. Among them, 
Flynn (1964) and Plesset & Prosperetti (1977) take into account the gas within the 
bubble, but neglect the liquid compressibility, Trilling (1952) assumes small compres- 
sion of the liquid, and Gilmore (1952) accounts for the fluid compressibility. Each of 
these formulations accounts for the gas pressure, surface tension and the liquid viscos- 
ity, and therefore is more realistic than the Rayleigh formulation. The inclusion of an 
elastic membrane in the Gilmore equation was proposed by Ding & Gracewski (1994) 
to investigate the effects of a confining membrane on bubble behaviour in response to 
applied pressures fields. Each of these formulations is investigated numerically since 
it is difficult to find the analytical solutions for these nonlinear equations. 

1.2. Experimental investigation 
Kornfeld & Suvorov (1944) were the first to suggest that cavities might collapse 
asymmetrically and produce a jet. Later on, many experiments and analyses proved 
the existence of a jet in a cavity collapsing asymmetrically. Such asymmetric bubble 
collapse can occur when a bubble is near a solid or gas interface or when a bubble 
is impacted by a strong shock wave. 

Since the 1960s, a number of researchers have studied the behaviour of bubbles near 
interfaces. For example, Vogel, Lauterborn & Timm (1989) studied laser-produced 
cavitation bubbles near a solid boundary. By using high-speed photography with up 
to 1 million frames per second, they observed jet and counter-jet formation, and the 
development of a ring vortex resulting from the jet flow near the solid boundary. 

More recently, bubble response to incident shock waves has also been studied 
experimentally. Dear & Field (1987) made cylindrical cavities in a gel to observe the 
collapse in these cavities when they are impinged by a shock. A striker was projected 
to impact the gel, and high-speed photography was used to record the behaviour of 
the cavities and jet formation under such impact. For an impact pressure of 0.26 GPa, 
a 3 mm bubble will generate a jet with a velocity of about 400 m s-l. 

Bourne & Field (1990) reported the results of a high-speed photographic study of 
cavities collapsed asymmetrically by shocks of strengths in the range of 0.26 to 3.5 
GPa. The collapse of a 3 mm cavity in gelatine under a shock of strength 0.26 GPa 
will have a velocity of 300 m SKI. Under a shock of strength 1.88 GPa, the jet velocity 
is up to 5000 m s-l for a 6 mm bubble. 

Philipp et al. (1993) also used high-speed photography and observed jet formation 
in a gas cavity induced by lithotripter-generated shock waves. They used peak shock 
source pressures of 65 and 102 MPa, and reported a peak jet speed of up to 770 m s-’ 
at the moment of collapse. The collapse time measured in these experiments ranges 
from 1 p s to 9 p s for bubbles with an initial radius between 0.15 and 1.2 mm. 

A liquid jet striking a solid surface will generate an impact pressure with a 
magnitude that can be estimated using the ‘water hammer’ equation as 

where p, c, u are density, sound speed and particle velocity, respectively, and subscript 
S refers to solid and subscript L refers to liquid. Usually, ~ S C S  +- PLCL, so p = p ~ c ~ u .  
The ‘water hammer’ equation can be used along with the experimentally measured 
velocity to estimate the damage the bubble collapse might cause on nearby solids. 
However, to the authors’ knowledge, no model yet exists to predict the bubble response 
to a range of shock wave fields or to describe the detailed pressure and velocity fields 
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that are generated. This information is important for a better understanding of 
cavitation phenomena and the possible cavitation damage to solids subjected to 
shock waves. 

1.3. Analysis of axisymmetric bubble collapse 
In most numerical models used for the analysis of bubble collapse near planar 
interfaces, the liquid surrounding the bubble is assumed to be inviscid, incompressible, 
and irrotational. ( S e e  review articles by Steinberg 1993, Blake & Gibson 1987, and 
Prosperetti 1982.) The first fully numerical model for collapse of a bubble near a rigid 
boundary was presented by Plesset & Prosperetti (1977). They integrated Bernoulli’s 
equation numerically and demonstrated the asymmetric collapse of a gas cavity near 
the boundary due to asymmetry of the resulting pressure field. Blake & Gibson (1987) 
used a boundary integral method to compute the growth and collapse of transient 
vapour cavities near a rigid boundary when subject to an incident stagnation-point 
flow in the presence of buoyancy forces. They found that the direction of the liquid jet 
can be either toward or away from the boundary depending on the flow parameters. 
Sato, Tomita & Shima (1994) also used a boundary integral method to simulate 
bubble behaviour for gas bubbles near a rigid boundary subjected to an oscillatory 
pressure field. In addition, they applied the method of images to solve the differential 
equations describing the nonlinear oscillation and migration of the bubble. In these 
three models, computation had to be stopped when the liquid jet reached the opposite 
bubble boundary. 

Recently, techniques have been developed, assuming a ring-bubble geometry, that 
allow further computation as the liquid jet penetrates the opposite boundary. Using 
a boundary element method with conventional and hypersingular equations, Zhang, 
Duncan & Chahine (1993) investigated the final stages of bubble collapse near a rigid 
wall. They were able to calculate the pressure generated by the jet impacting the rigid 
boundary. 

Tipton, Steinberg & Tomita (1992) considered the effect of fluid compressibility 
on bubble collapse near a rigid boundary. They used an ALE (Arbitrary Lagrangian 
Eulerian) hydrodynamics code to obtain pressure fields and bubble response. They 
were able to continue calculations even after the jet impacted the opposite bubble 
wall and therefore were able to obtain a prediction for pressures generated along the 
rigid interface. 

Numerical studies of shock wave interactions with bubbles have mainly been limited 
to gas bubbles within a gas medium (Quirk & Karni 1994; Evans, Harlow & Meixner 
1962; Haas & Sturtevant 1987; Schwendeman 1986; and Picone & Boris 1988). Grove 
& Menikoff (1990) presented results for weak and strong shock waves interacting 
with a gas bubble in water. Their main interest is in the anomalous reflection and 
diffraction of shock waves at interfaces and therefore their results are limited to times 
during which the shock wave is interacting with the bubble. 

1.4. Scope of the paper 
In this paper, the Euler equations in cylindrical coordinates with axisymmetry are 
used to investigate a gas cavity response to a step shock wave. To accurately model 
the shock wave propagation, compressibility of the fluid must be taken into account. 
Both weak and strong shocks are used in the numerical simulations. The reflection, 
transmission, and refraction of the shock waves as well as the velocity fields near 
the gas cavity are investigated to provide a clear view of the bubble responses 
under various shock conditions. The responses of a gas cavity to weak shocks 
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FIGURE 1. The problem geometry. 

are compared to results predicted by the one-dimensional Gilmore model to help 
identify the conditions under which the spherically-symmetric model can be used to 
predict the response of a gas cavity to shock waves. In addition, responses to strong 
shock waves and the resulting jet formation and velocity fields are presented and 
discussed. 

2. Two-dimensional simulation of a spherical gas cavity 
The problem considered consists of an initially spherical gas cavity in statical 

equilibrium with the surrounding liquid that is struck by a planar shock wave 
propagating in the liquid as shown in figure 1. To generate a model to simulate the 
gas cavity response to shock waves, the following assumptions are made: 

(i) The problem is axisymmetric. 
(ii) It is an adiabatical process except within the shock front. 

(iii) The body force, surface tension and shear viscosity are negligible. 
(iv) Diffusion across the water-gas interface is neglected. 
The conservation equations (2.1~-d) in a cylindrical coordinate system, as well 

as the water equation of state as describe by Steinberg (1987) and the ideal gas 
equation of state govern the response of the two fluids. In the computation program, 
derivatives in time are evaluated along the motion of the fluid. They are Lagrangian 
and denoted by dldt. A more detailed discussion of the discretization techniques can 
be found in SHALE (Demuth et al. 1985). The conservation equations are 

(2.la) 
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( 2 . k )  

where p is the specific density, t is the time, r and z are the axisymmetric coordinates, 
ur and u, are the velocity components, e is the specific internal energy, p is the 
hydrostatic pressure, E is the shearing rate tensor, and C is the artificial viscosity 
tensor which will be discussed later. 

2.1. The numerical scheme 
We developed a computation program to solve the axisymmetric Euler equations based 
on the finite volume methods of Wilkins (1964). We also borrowed many computation 
techniques from the hydrodynamics codes SALE (Hirt, Amsden & Cook 1974) and 
SHALE (Demuth et a/. 1985), which are arbitrary Lagrangian and Eulerian codes 
combining the advantages of both the Lagrangian and Eulerian methods. 

To capture the shock, we designed an artificial viscosity based on previous works 
and the physics of the shock. We also designed a weighting method in mesh generation 
that will generate finer meshes near the shock front and around the gas cavity where 
the pressure gradients are much higher than in other regions in the computational 
domain. 

2.2. The artiJicia1 viscosities 
The Navier-Stokes equations admit discontinuous solutions, including shocks and 
contact discontinuities. If no artificial viscosity is added in the numerical computation, 
large oscillations in density, velocity, etc. will occur behind the shock front since the 
numerical equations do not predict enough conversion of kinetic energy to internal 
energy. 

The artificial viscosity methods introduce a dissipative term in the shock front, 
to allow the discontinuous shock propagation to be approximated by a continuous 
description. Neumann & Richtmyer (1950) were the first to propose a method of 
capturing shocks in one-dimensional hydrocodes by introducing an artificial viscosity 
q in the form 

where A x  is the mesh size, u is the particle velocity, I/ is the volume, and cq is a 
constant near unity. 

Landshoff (1955) added a linear term in the Von Neumann-type artificial viscosity, 
and obtained another artificial viscosity for one-dimensional hydrocodes, in the form 

4 = C & w 2  + ClCSPIA4, (2.3) 

where Au is the difference in particle velocity across the mesh, cq and c1 are constants 
of the order of unity, and c, is the local sound speed. The linear term in the artificial 
viscosity is effective in damping out the non-physical oscillations after the shock 
propagates through the medium. For this reason, it does a better job than the Von 
Neumann artificial viscosity. 

In two dimensions, Wilkins (1980) designed an artificial viscosity accounting for 
the non-regular mesh size by defining an equivalent cell length in the direction of the 
acceleration. The equivalent cell length L is defined as the cell area divided by the 
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calculated average thickness of the zone normal to the direction of acceleration. The 
artificial viscosity q is given as 

where q = 0 for ds/dt 2 0, c, is the sound speed, c, m 2, CL = 1, and 

2A 
dl + d 2 + d 3 + d 4 ’  

L =  

(:; ;:) ds ak  aY 2 -=-cos2a+-sin a+ -+-  cosasina. 
dt ax  aY 

(2.5) 

Here A is the area of the cell, and di is the perpendicular distance from node i to a 
line through the cell centre in the direction of acceleration, and a is angle between 
this line and the x-axis. This artificial viscosity does not perform well in meshes with 
large aspect ratios. 

Margolin (1988) designed an artificial viscosity based on the assumption that the 
resultant forces of the artificial viscosity should be in the direction of the relative 
velocity, Au, rather than along the edge of a cell. He assumed no hourglass in the 
cell, i.e. 

u1 - u2 + u3 - u4 = 0, 
where ui is the velocity of node i. The velocity difference of a cell’s nodes is computed 
in terms of the spatial gradients of the velocity in the cell, not the difference of actual 
velocities of the nodes. He defined two vectors using the four node points of a mesh: 

(2.7) 

k = O.% + x3 - x1 - x4, y2 + ~3 - YI - ~ 4 1 ,  

1=0 .5 (X3+X4-Xi  - X X ~ , Y ~ + Y ~ - Y ~  - y2 ) .  

For the cell-centred artificial viscosity to produce inter-nodal forces in the velocity 
difference direction, he constructed the artificial viscosity 

where 

and cl rz 1, cq rn 1, and c, is sound speed. The four components of the tensor 
artificial viscosity are used as the real stress components in accelerating the nodes 
and in computing the energy. The artificial viscosity is turned on only when the cell 
is compressed. 

Benson (1991) designed a flux-limiting artificial viscosity by using a monotonicity 
limiting technique (Leer 1977, 1979) in computing the velocity jump and defining 
the cell principal strain direction as the shock direction. Benson’s artificial viscosity 
performed better than those discussed above as reported in his paper. 

Since the velocity change across a shock is normal to the shock front (Thompson 
1988), we defined the shock propagation direction in terms of the velocity differences 
of the nodes on each side of a cell. This velocity difference is computed using the 
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RGURE 3. Velocity jump in the mesh coordinate system and the direction of nodal velocity 
differences for the two velocity jumps. 

velocity gradients of the cell. The velocity jump across a mesh is computed in the 
same way as in Benson's artificial viscosity (Benson 1991). This jump is first computed 
in the mesh coordinate system, is then transferred to the Cartesian coordinate system, 
and is finally projected to the shock propagation direction. In the shock direction, 
an artificial viscosity is constructed which includes the linear and quadratic terms. 
A coordinate transformation is performed so as to obtain the artificial viscosity in 
the Cartesian coordinates. The artificial viscosity is turned on only when the cell is 
compressed, i.e. V - u  < 0. The detailed design of this artificial viscosity is given below. 

As in Benson's method (Benson 1991), ei = X / E j  are defined as the base vectors 
in the mesh coordinate system (figure 2), where E j  are the the unit vectors in the 
Cartesian coordinate system ( x l ,  x2) ,  and 

X! = i [x'(k + 1,Z) - ~ ' ( k ,  1) + ~ ' ( k  + l,Z + 1) - ~ ' ( k ,  1 + I)], 
Xi2 = i [xi(k, 1 + 1) - ~ ' ( k ,  1 )  + x'(k + 1, 1 + 1) - x'(k + 1, Z)]. 

(2.10) 

(2.11) 

The two velocity jumps Au' and Au2 are computed in the same way as in Benson's 
artificial viscosity (Benson 1991). In figure 3, A d  is the velocity jump across side 1 - 4 
and 2 - 3, and Au2 is the velocity jump across side 1 - 2 and 3 - 4. Therefore the 
direction for Au' is determined by the velocity difference between node 1 and node 4, 
which is Au41 = u4 - ul. A unit vector a1 (equation (2.12)) is defined in the direction 
of Au41. Similarly, a unit vector u2 (equation (2.13)) is defined as the direction for the 
velocity jump Au2, and is determined by the velocity difference between node 1 and 
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node 2.7 The two unit vectors a1 and a2 are computed as 

a1 = cos(4l)El + sin(ddE2, 
a2 = W42)E1 + sin(b)E2, 

where 

(2.12) 
(2.13) 

(2.14) 

(2.15) 

The velocity jumps A d  and Au2 are transferred to the Cartesian coordinate system 

Au' = Au'X;E1 + Au'XtE2, 
Au2 = A u ~ X ~ E ~  + Au2X;E2. 

(2.16) 
(2.17) 

The velocity differences in the shock propagation direction can be computed as 

Aug = al * A d  = Au'X; cos($l) + Au'X: sin(4'), 
Au: = a2 Au2 = Au2Xi c o ~ ( 4 ~ )  + Au2Xi sin(42). 

The artificial viscosity is then constructed in the two velocity difference directions 

(2.18) 

(2.19) 

where p is the density, CI and cq are constants typically in the range 0.3-1.5, and c, 
is the local sound speed. The above artificial viscosities are transferred back to the 
Cartesian coordinate system: 

(2.20) 

where 

2.3. Mesh generation 
In a discretized computation, the meshing techniques are important in obtaining 
an accurate approximation for the continuous system as well as in determining the 
efficiency of the program. A smooth and rectangular mesh is desirable. When a large 
deformation is involved, a technique is needed to regenerate the mesh so that it will 
remain smooth and regular. In many problems, the gradient of some parameters can 
be much higher in some regions than that in other regions of the computational 
domain. It is desirable that the mesh be finer in the region of higher gradients since 
the rate of change is usually higher at these locations. When a shock is involved, it 
is desirable to have a finer mesh near the shock front so that the shock front will be 
defined by a thin layer in the computational mesh. 

2.3.1. Adaptive zoning 
A very simple, efficient and widely used mesh generation technique is the 'equal- 

potential method' designed by Winslow (1963), which generates a uniform mesh in the 

t Under the assumption of no hourglass, equation (2.7) shows that A U ~ ~  = 81132 and AuzI = 811%. 
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computation domain. This technique was used in generating the initial computation 
mesh. Brackbill & Saltzman (1982) designed another mesh generation method, which 
extended Winslow’s methods to adaptively vary the zone sizes and orthogonality of 
the grid lines in the resulting mesh. Many other investigators also developed methods 
of generating the adaptive mesh (Matsuno & Dwyer 1988; Dwyer, Kee & Sanders 
1980; Jordan & Spaulding 1993; Thompson, Warsi & Mastin 1985). In our program, 
we designed a stable and efficient weighting method by adapting the mesh size with 
the pressure gradient and combined the adaptive methods proposed by Brackbill & 
Saltzman in the re-zoning process of computations. 

Brackbill & Saltzman (1982) observed that the differential properties of the map- 
ping determine the properties of the computation mesh. The global smoothness of 
the mapping on domain D is measured by the integral 

#. 

The orthogonality of the mapping is measured by 

I ,  = (Vc Vq)’J3dV, 
ID 

(2.21) 

(2.22) 

and the weighted volume variation is measured by 

IV  = wJdV, (2.23) 

where and q are the mesh coordinates, J is the Jacobian, and w(x,y) is a given 
weight function. The smoothest mapping can be obtained by minimizing I,, the most 
orthogonal mapping by minimizing I,, and the mapping with specified variation of J 
by minimizing Iv. 

To formulate minimization problems with unique solutions, the minimization of I, 
or I“ is combined with I , .  That is, the integral I is minimized, where 

(2.24) 

with Av 2 0, and A, 3 0. 
An approximate solution to the minimization problem, which represents the desired 

mesh, is obtained by Gauss-Seidel iteration. In generating an initial computational 
mesh, 100 iterations are typically performed. For re-zone computation, three iterations 
are enough to generate the required mesh. 

2.3.2. The weight function 
In our program, the weight function for the mesh generation is the pressure 

gradient. The pressure gradient is an indicator of rate of change of parameters, such 
as velocity, density and momentum. Therefore, at the location where the pressure 
gradient is high, the rate of the change of parameters is high as well and finer meshes 
are needed. To obtain the pressure gradient in the computation meshes, the following 
formula is used: 

I = I ,  + AVIV + &I,, 

(2.25) 

The finite difference method in Brackbill & Saltzman (1982) is used to obtain the 
weight function in the finite difference form. 
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i -1 , j -1  i j - 1  i + l , j - 1  

FIGURE 4. The meshes showing the numbering system. 

2.3.3. Application of weight function 
The original weighted volume variation method in equation (2.23) is cumbersome 

to implement in the numerical program and is not always convergent in the iteration 
process. Therefore, we designed another method of applying the weighted function 
that is efficient, stable and easy to implement in the program, and is described below. 

In one dimension, or along a straight boundary, we can always locate the new 
position of a grid point using the average of the surrounding two grids to obtain a 
smooth grid distribution: 

x; = + Xi+l). (2.26) 
If we need a mesh to be weighted by the weight function, we can use the formulation 

xw = W .  r-1 x. 1-1 + Wi+lxi+l, (2.27) 

where the weight functions Wi are normalized, i.e. Wi-l + Wi+l = 1, with Wi-l = 
wi-l/(wi-l + wi+l), and Wi+l = wi+l/(wi-l + wi+l). We combine both smooth and 
weight methods by the formula 

(2.28) 

The constant As in equation (2.28) provides the means of controlling smoothness 
and weighting and is determined by numerical experiments. In the computational 
program, 1, is typically in the range 2-4. 

In two dimensions, we use the surrounding four grid points as the weighting points 
for a grid point. In figure 4, points 2, 4, 6, and 8 are used as weighting points for x i j .  

The weight functions are normalized, i.e. WZ + $4 + W6 + iir8 = 1. The generated grid 
points are 

x; = W2x2 + w4x4 + w66x6 + wSx8. (2.29) 
The Saltzman method is modified, and only the techniques to generate a mesh 
with control of smoothness and orthogonality are used. The positions generated by 
this modified Saltzman technique are written as x!:. We then combined our weight 
function techniques with the modified Saltzman method to obtain the new position 
of the node 

(2.30) 

with Aso as the control parameter of smoothness, orthogonality and weighting. Again, 
As, is determined by numerical experiments, and typically, A,, is in the range 4-8 in 
the computations. 
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3. Gas cavity response to shocks 
In this section, we present the computed results for the response of a gas cavity to 

step shock waves using the numerical techniques described in the previous section. 
The initial pressure is po = 0.1 MPa. The initial radii of the gas cavities are 0.01, 0.1, 
and 1 cm. Both weak shocks (typically p / p o  is in the range of 200 to 300) and strong 
shocks (p /po  ranges from 5000 to 20000) are applied. A weak shock, as defined in 
Thompson (1988), satisfies the relation ( p  - po)/poc; << 1, where p is the pressure 
behind the shock front. And a strong shock is defined as satisfying the relation 
( p  - po)/poc; >> 1. However, in this paper a weak shock is defined as a shock with 
a strength which will not cause a jet formation upon bubble collapse. And a strong 
shock is defined as a shock with a strength which will lead to a jet formation upon 
impact with the gas cavity. 

3.1. Response to weak shock waves 
With a shock strength of p / p o  = 205, the compression of the water is very small, 
p / p ~  - 1 = 0.009. Therefore the shock wave propagation is very close to the acoustic 
limit. The initial density of water is 1000 kg m-3, and the acoustic wave speed is 
1480 m s-l. For this shock strength, the shock speed is 1514 m s-l, and the particle 
speed behind the shock front is 13.5 m s-'. The initial density and acoustic wave 
speed in the gas are 1.2 kg mP3 and 343 m s-I, respectively, with ratio of specific 
heats y taken as 1.4. The ratio of the acoustic impedance for water and gas is 

Owing to this large impedance mismatch, we expect almost total reflection when a 
weak shock wave, propagating in water, impacts the gas cavity. 

In the computational domain we used 8 meshes in the r-direction and 16 meshes in 
the z-direction to define the gas bubble. A total of 80 x 160 meshes are used for the 
entire computational domain. Approximately 24 meshes from the bubble centre, the 
mesh size increases with a ratio of 1.05, making the size farther away from the bubble 
larger. This design of meshes uses less computational time than uniform meshes, while 
maintaining a good resolution near the gas cavity. 

Figure 5 shows the Mach contour when a shock ( p / p o  = 205) impinges on a cavity 
(& = 0.01 cm). The time interval between each successive plot is 0.1 ps. The shock 
front and rarefaction waves can be seen clearly in the water as well as in the gas. In 
figure 5(a), the shock front has just impacted the gas cavity. In figure 5(b), the shock 
propagates into the gas, and a rarefaction wave propagates away from the gas cavity 
after the shock interacts with the gas-water interface. 

When the shock, propagating in the water, reaches the top wall of the bubble, it 
separates from the cavity (figure 5c) and continues to propagate away from it. There 
is no significant deformation of the bubble wall during this time because the shock is 
weak and the particle speed behind the shock front is much smaller than the shock 
speed. 

The remaining plots in figure 5 show the convergence of the shock wave within 
the gas and the increase of Mach number in the water surrounding the gas driven 
by the pressure gradients near the cavity. Figure 5(d )  shows that the location of 
convergence of the shock within the gas is close to the bottom of the cavity. Although 
the transmitted shock in the gas will converge, the resulting pressure increase in that 
region is not significant since the transmitted shock in the gas is very small owing to 
the impedance mismatch of gas and water. 
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FIGURE 5. Mach contour of a gas cavity (& = 0.01 cm) impacted by a weak shock ( p / p o  = 205). 
The time interval between each plot (a-f) is 0.1 p. 

In the one-dimensional, spherically symmetric models for bubble dynamics, the 
shock pressure is assumed to act instantaneously in the geometrical space. In reality, 
the shock propagates and encounters and passes the gas cavity from one side to the 
opposite side in a finite amount of time. This will produce non-spherical movement 
of the gas-water interface that cannot be represented in the one-dimensional model. 
However, for weak shocks, the interface motion is small during the time it takes for 
the shock front to pass over the cavity and therefore the non-spherical motion is not 
an important contributor to the subsequent cavity collapse. 

Figure 6 shows the pressure field around the gas cavity for the same problem as 
above. The time interval between each plot is 0.15 ps. Figure 6(a) shows the pressure 
at time t = 0, the time at which the shock front just reaches the top of the gas cavity. 
In figure 6(b), the shock front has just passed the gas cavity, with the rarefaction 
wave spreading in water around the cavity. This creates a pressure gradient which 
drives the fluid towards the cavity. In figure 6(c, d) ,  the pressure surrounding the cavity 
begins to further increase owing to the convergence of the water toward the gas cavity 
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FIGURE 6. Pressure field of a gas cavity (I& = 0.01 cm) impacted by a weak shock ( p / p ~  = 205). 
The time interval between each plot is 0.15 ps. 

and the pressure gradient around the cavity is significantly larger than other regions 
far away from the cavity. 

In figure 6(e), the liquid pressure surrounding the gas cavity is increased to a 
level higher than the shock strength, i.e. the pressure surrounding the gas cavity 
is larger than 20.5 MPa. At this stage, the volume of the gas cavity has still not 
significantly decreased, and the gas pressure remains much lower than that in the 
surrounding water. The large pressure gradients surrounding the cavity interface will 
rapidly drive the interface inward, and the fast convergent motion of the liquid 
particles surrounding the cavity carries a large inertia, which when resisted by the 
gas will create a large pressure increase. The high pressure gradient and the inertia 
of the convergent moving liquid cause a violent collapse of the gas cavity. The gas is 
compressed to a volume of about 0.042 % of the original volume, and the gas pressure 
reaches a value larger than 7 GPa at the cavity centre, owing to the rapid compression. 

Next, the large pressure within the gas drives the liquid outward from the gas 
cavity. The gas cavity expands. In figure 6 0 ,  the gas cavity is expanding, a pressure 



196 Z.  Ding and S .  M .  Gracewski 

1:::;:::;::: : :I 
0 0.03 

0.24 

(4 
0.29 

u 
0.03 

0.240- 

. .  , , , .  . I 

. . . . . . . . . . .  

0 0.03 
0.24 

(f) 
0.29 

. . . . . . . . . .  

0 0.03 
0.24 

(.i) 

............. ............ , ............ , ............. ............. . I  

0 0.03 
0.24' ' ' . . I 

(s) 
0.29 k . . . . .  ......... 

. ........... . . . . . . . . . . . .  

0 0.03 

FIGURE 7. Velocity field of a gas cavity (& = 0.01 cm) impacted by a weak shock ( p / p o  = 205). 
The time interval between each plot is 0.15 p. 

wave is propagating away from the gas cavity, and the gas pressure within the cavity 
is decreasing due to the expansion. Figure 6(g)  shows the outward propagation of 
the pressure wave generated by the compressed gas. The cavity continues to expand 
owing to the inertia of the fluid particles, and the gas pressure drops even further. 

Figure 6(h,i) shows that the pressure gradient surrounding the gas cavity again 
begins to drive the liquid toward the gas cavity. Figure 6 ( j )  shows the second rapid 
compression of the gas. The gas pressure again reaches a level higher than in the 
surrounding liquid, creating a large pressure gradient to drive the liquid flow outward 
from the gas cavity. However the amplitude of the pressure is smaller than for the 
first collapse. Figure 6(k , l )  shows the gas cavity expanding and the pressure wave 
propagating away from the gas cavity. The pressure within the gas cavity is again 
lower than in the surrounding liquid owing to cavity expansion, and the pressure 
gradient will drive the fluid to flow toward the gas cavity again, compressing the 
gas. This pattern of compression and expansion of the gas cavity will repeat with 
decreasing pressure amplitude, until the equilibrium state is reached. 
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Figure 7 shows the velocity vector fields for the same time sequence as figure 6. 
The amplitude of the velocity is normalized within each plot. Figure 7(a) is at the 
time when the shock front reaches the top of the gas cavity. The particles behind 
the shock front flow in the shock propagation direction with a constant speed of 
13.5 m s-'. In figure 7(b) the shock front has already passed the gas cavity, and the 
particles near the gas cavity are flowing toward the gas cavity driven by the pressure 
field. The velocity at the top of the gas cavity is higher than that at other locations. 
The bottom of the gas cavity has just begun to accelerate upward at this moment 
( t  = 0.15 p). The shock wave also propagates into the gas cavity. The particles, 
driven by the pressure gradient, move inward toward a point slightly below the centre 
of the cavity. In figure 7(c,d), the gas-water interface is further accelerated, moving 
inward, and the volume of the gas cavity continues to decrease. In figure 7(e), the 
gas-water interface is accelerated further by the pressure gradient. At this time, the 
cavity collapses violently. 

Figure 7 0  shows the rapid expansion of the cavity after its violent collapse. The 
velocities at the gas-water interface have the highest amplitude and move the interface 
outward. Figure 7(g) shows the continued expansion of the gas cavity, with slower 
velocities along the gas-water interface. The downward migration of the gas cavity can 
be clearly seen in this plot. In figure 7(h), the fluid begins to flow inward, leading to 
the second compression of the gas cavity. At this moment, the velocity of the inward 
motion is not large compared with the first collapse. The downward migration of the 
cavity is much larger than the motion toward the gas cavity centre. In figure 7(i,j) 
the fluid is flowing inward toward the gas cavity, compressing the gas rapidly. The 
rapid compression of the gas will lead to a rapid increase of gas pressure as shown 
in figure 6, which will drive the gas-water interface outward. Figure 7(k)  shows the 
expansion of the cavity and the outward motion of the gas-water interface. In figure 
7(1), the speed of expansion is reduced, and the downward migration of the gas cavity 
again dominates the motion of the cavity and the surrounding fluid. 

Figure 8 shows the computation mesh and the shape of the gas-water interface 
for the above problem. In the initial computation mesh, the cells surrounding the 
gas cavity are much finer than those within the gas cavity. This design of the mesh 
is due to the consideration that there will be a much larger pressure gradient in 
the liquid surrounding the gas cavity than within the gas cavity. When the cavity is 
compressed, the mesh size within the gas cavity will decrease dramatically. With the 
initial coarse mesh, the cells within the gas cavity will not become too small when the 
cavity collapses, therefore an acceptable computation time step can be maintained. 
The mesh in the liquid surrounding the gas-water interface is maintained to be much 
finer than other regions in the computation domain due to large pressure gradients 
near the interface. This is achieved by using the adaptive mesh generation techniques 
introduced in Q 2.3.3. 

The velocities and the pressure at the top and bottom of the gas-water interface 
are shown in figure 9 as function of time. The solid curve in figure 9(a) is the interface 
velocity at the cavity top. The dashed curve is the interface velocity at the cavity 
bottom. The dotted curve is the interface velocity predicted by the Gilmore model 
with rise time z = 0.02 ps.? When the shock hits the interface, the top of the interface 

The rise time z for the step shock used in the Gilmore (1952) model is 0.02 ps for a cavity with 
initial radius of 0.01 cm. Since in the two-dimensional computations, the shock front is represented 
by about 6 cells, and spread in a range of about 0.003 cm, it will take about 0.02 p for the shock 
strength to rise from po to p .  Similarly, for an initial cavity radius of 0.1 cm, the rise time is 0.2 ps. 
For a 1 cm cavity, the rise time is 2 p  



198 Z .  Ding and S .  M .  Gracewski 

(a)  

0 0.022 

mm 0.285 

0 0.022 

0.285 0.285 0.285 0.285 

0.245 0.245 0.245 0.245 
0 0.022 0 0.022 0 0.022 0 0.022 

. .  
0.285 0.285 0.285 0.285 

0.245 0.245 0.245 0.245 
0 0.022 0 0.022 0 0.022 0 0.022 

RGURE 8. Computational mesh for a gas cavity (& = 0.01 cm) impacted by a weak shock 
( p / p ~  = 205). The time interval between each plot is 0.15 ps. 

is forced into the gas cavity with a velocity of approximately 25 m s-', about twice 
the velocity of the particles behind the shock front (a factor of 2 is what shock theory 
would predict for particles 'spalled' from a free surface). It will take about 0.02 ps 
for the shock to pass around the entire cavity; the motion of the cavity bottom is 
delayed by that amount of time. There is no jump of velocity at the bottom of the 
cavity. 
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FIGURE 9. The velocity and gas pressure of a & = 0.01 cm gas cavity subjected to a shock with p/pO 
= 205. (a) The cavity wall velocity: -, velocity of cavity top; - - -, velocity of cavity bottom; 
. . . . . , cavity wall velocity predicted by Gilmore model. (b)  Gas pressure: -, gas pressure at the 
cavity top; . . . . . , gas pressure predicted by the Gilmore model. 

The solid curve in figure 9(b) is the gas pressure at the top of the cavity. The 
dotted curve is the gas pressure predicted by the Gilmore model. The pressure field 
surrounding the cavity will drive the interface into the gas cavity, causing it to 
violently collapse at t m 0.712 ps, with the interface velocity -963 m s-'.t Owing to 
the rapid compression of the gas in the cavity, the gas pressure at the top of the cavity 
will increase to nearly 6 GPa at the time of cavity collapse. This rapid increase of 
pressure within the gas will reverse the movement of the interface violently, causing 
the interface to move outward. Within 0.015 ps, the interface velocity will change 
to 884.9 m s-l from -963 m s-'. This rapid cavity expansion will cause the gas 
pressure to drop to a level lower than in the surrounding water. An inward motion of 
the interface begins at t = 0.9 ps. Another rapid compression occurs, and the cavity 
collapses again at t = 1.37 ps. The collapse velocity is about -200 m s-l this time, 
and the collapse pressure of the gas at the cavity top is about 129 MPa. The second 
collapse of the cavity is much less violent than the first one, and the outward speed is 
much smaller. It takes about 0.09 ps for the interface velocity to change from -200 to 
100 m s-l. The computed results also show that the Gilmore model agrees very well 
with the two-dimensional results for the interface movement and the gas pressure in 
this particular case. 

indicates the interface is moving outward. 
7 The minus sign indicates that the interface is moving into the cavity. And a positive value 
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FIGURE 10. The velocity and gas pressure of a & = 0.01 cm gas cavity subjected to a shock with 
p / p o  = 300. (a): The cavity wall velocity: -, velocity of cavity top; - - - , velocity of cavity 
bottom; . . . . . , cavity wall velocity predicted by Gilmore model. (b) Gas pressure: -, gas 
pressure at the cavity top; . . . . . , gas pressure predicted by the Gilmore model. 

When the shock strength is increased to p / p o  = 300, the behaviour of the gas 
cavity and the pressure wave forms are quite similar to the case shown above but the 
collapse of the cavity is more violent. Figure 10 shows the velocity and gas pressure 
of a 0.01 cm gas cavity impacted by a shock with p / p o  = 300. The interface velocity 
and gas pressure predicted by the Gilmore model are also plotted as a comparison. 
The collapse velocity for the top of the bubble wall is -1233 m s-l, and the maximum 
expanding velocity at the top of the interface is 963 m s-'. Owing to the increase of 
the shock strength, the cavity collapses sooner and more violently. The collapse time 
is 0.59 ps. The collapse pressure in the water at the top of the gas cavity is 7.31 GPa, 
and at the bottom it is 7.47 GPa. The collapse gas pressure at the top of the cavity is 
10 GPa, at the centre it is 15 GPa, at the bottom it is 11.9 GPa. 

The change of the initial cavity size will significantly change the collapse time. For 
a cavity with initial radius & = 0.1 cm impacted by a shock with p / p o  = 205, the 
collapse time is 7.02 ps. The velocity at the top and bottom of the interface and the 
gas pressure at these locations are shown in figure 11. The results computed with the 
Gilmore model are also presented in the same figure. At the time of collapse, the 
maximum interface speed (-1037 m sW1 at the top, and -1091 m s-l at the bottom) 
is faster for the larger gas cavity. But the maximum expansion velocity (590 m ssl 
at the top, and 696 m s-' at the bottom) is smaller. The maximum gas pressures 
(7.8 GPa at the cavity centre, 5.1 GPa at the top, and 5.4 GPa at the bottom) are 
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FIGURE 11. The velocity and gas pressure of a I& = 0.1 cm gas cavity subjected to a shock with 
p / p o  = 205. (a) The cavity wall velocity: -, velocity of cavity top; - - -, velocity of cavity bottom. 
. . . . . , cavity wall velocity predicted by Gilmore model. (b)  Gas pressure: -, gas pressure at the 
cavity top; . . . . . , gas pressure predicted by the Gilmore model. 

smaller for larger cavities as well. For a 1 cm cavity, the collapse time is 73.2 p. The 
collapse pressure at the centre of the cavity is 4.6 GPa. The general behaviour is 
similar to that of the 0.01 cm gas cavity. 

3.2. Response to strong shock waves 
When a strong shock is applied, the nonlinearities of the flow are large, and the 
rarefaction spreads over a larger distance. Compared with the weak shock, the 
particle velocity behind the shock is also much larger for the strong shock, therefore 
a much larger momentum will impact the gas-water interface when the shock front 
hits the gas cavity. For a shock with p/pO = 5280, the particle speed behind the 
shock front is 255 m s-l. For shock strength p / p o  = 10100, it is 419 m s-l. And for 
p / p o  = 2060, the speed is 700 m s-'. 

The initial conditions for the gas bubble and surrounding water are the same as 
those in the weak shock problem. Eight meshes in the r-direction and 8 meshes in 
the z-direction are used for the gas. A total of 60 x 90 meshes are used in the whole 
computational domain. 

Figure 12 shows the Mach contours for a shock ( p / p o  = 5280) impacting a gas 
cavity (& = 0.1 cm). The time interval between each plot is 0.2 ps. At t = 0 (figure 
12a), the shock just impacted the gas cavity, and the top of the gas cavity is forced 
into itself with a speed of about 500 m s-l, approximately twice the particle speed 
behind the shock front. This speed is higher than the sound speed of gas, driving the 
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FIGURE 12. The Mach contours of a gas cavity (& = 0.1 cm) collapsed by a shock with strength of 
p / p o  = 5280. The time interval between each plot is 0.2 ps. 

to form a shock propagating downward. Figure 12(b,c) shows the large rarefaction 
wave in water, and the shock propagation in the gas cavity. The interface is deformed 
rapidly as well. The non-symmetric movement of the interface is obvious with the 
bottom of the cavity remaining static. The shock propagation in the gas cavity will 
not converge to a point as in the weak shock situation. Figure 12(d-f) shows the 
spreading of the rarefaction wave as well as the shock propagation in the water and 
cavity. Even though the shock has not yet reached the bottom of the cavity so that it 
has not yet begin to move, the top of the cavity has already moved halfway across the 
centre of the cavity. Figure 12(g,h) shows the shock front within the gas reaching the 
bottom of the cavity: however the bottom of the cavity has not moved significantly. 
And the top of the cavity has already formed a jet, which will penetrate the bottom 
of the cavity at t = 1.6 ps (figure 12i). 

Figure 13 shows the pressure contours of the above problem. At t = 0, the shock 
front reaches the top of the gas cavity (figure 13a). Figure 13(b,c) shows the large 
rarefaction of the shock wave. Figure 13(d) shows the top of the interface being forced 
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FIGURE 13. The pressure contours of a gas cavity collapsed by a shock with strength of 
p / p o  = 5280. The time interval between each plot is 0.2 ps. 

into the cavity, while the shock is just halfway across the cavity. Figure 13(e,f)  shows 
the spreading of the rarefaction wave, and the top of the gas cavity is rapidly moving 
towards its opposite side. The pressure gradient in the water near the cavity top is 
even higher than at previous times. 

The curvature of the pressure contours indicates that the pressure gradient is not 
convergent to a point within the gas cavity. Instead, the pressure gradient above the 
gas cavity will drive the fluid to flow to the location above the top of the deformed 
cavity which is approximately the centre of the cavity in its undeformed configuration. 
This motion of the fluid particles will cause stagnation above the top of the cavity 
and therefore a pressure increase is expected. Figure 13(g) ( t  = 1.2 ps) shows the 
increase of pressure above the cavity. This pressure build up continues as shown in 
figure 13(h,i), and a larger pressure gradient above the gas cavity further accelerates 
the motion of the cavity top. A jet with speed of 2200 m s-l (at t = 1.6 ps) is about 
to penetrate the opposite side of the cavity. 

The pressure on the top of the gas cavity can reach as high as 1 GPa before the 
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FIGURE 15. Velocity field surrounding a gas cavity (& = 0.1 cm) impacted by a strong shock 
( p / p o  = 5280). The time interval between each plot is 0.2 ps. 

jet reaches the bottom of the gas cavity. Because the cavity volume variation is not 
large, the gas compression is small and the gas pressure does not increase much. 

Figure 14 shows the computation mesh for this problem. Figure 14(a) is at the 
time when the shock just reaches the top of the gas cavity (t = 0). The time interval 
between each plot is 0.2 ps. The gas cavity collapses at 1.6 p s (figure 14i). With the 
adaptive mesh generation techniques, the mesh automatically adapted to the pressure 
gradient. Here, at the shock front and the area around the gas cavity, the pressure 
gradients are higher. Therefore the meshes in these regions are finer. At t = 1.6 p, 
we terminated the computations, since the meshes within the gas cavity are too small, 
and the time step became unacceptably small. 

Figure 15 shows the velocity field surrounding the gas cavity. In figure 15(a), the 
fluid particles behind the shock front have the same velocity and direction. The 
particles in other regions remain static. Figure 15(b) shows the shock impacting the 
top of the cavity; the top of the interface is forced into the gas cavity with a speed 
equal to approximately twice the speed of the particles behind the shock front due 
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to the impedance mismatch between gas and water. As the rarefaction wave spreads 
away from the top of the gas cavity, the pressure gradients drive the particles to flow 
toward the gas cavity. Unlike the convergence movement as seen in the weak shock 
situation, the velocity component in the downward direction is always large. Figure 
15(d-f) shows the upper part of the cavity interface moving rapidly downward, while 
the lower part of the cavity remains static. The asymmetric movement of the cavity 
continues and the jet speed will reach its highest value at t = 1.6 ps. 

We also computed the cases with initial gas cavity sizes of l?-, = 0.01,0.1, and 1 cm, 
and with the shock strengths of p / p o  = 5280, 10110 and 20600. The general patterns 
of the gas cavity collapse, the rarefaction of the shock wave and the velocity profiles 
of the jet are similar. Figure 16 shows the velocities of the cavity top (the jet) with 
initial radius of 0.01 cm (a), 0.1 cm (b)  and 1 cm (c).  The larger the gas cavity, the 
longer the collapse time, but the collapse velocities are almost the same, independent 
of the initial cavity size. They are only a function of the applied shock strength. 
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4. Summary 
The responses of gas cavities to both weak and strong shock waves were analysed. 

For a weak shock, the Gilmore model provides an accurate prediction of gas bubble 
response. The non-spherical movement of the interface is small, so the gas cavity 
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will collapse without jet formation. This collapse generates a large pressure in the 
gas cavity and the surrounding water by the rapid compression of the gas, radiating 
a pressure wave propagating away from the gas cavity. The gas cavity will expand 
after the collapse, and will collapse again with a weaker compression of the gas. This 
pattern of compression and expansion will continue until the gas cavity reaches an 
equilibrium state in the liquid. The larger the initial size of the gas cavity, the longer 
it will take to collapse. The collapse pressure of the gas cavity will slightly decrease 
as the initial gas cavity size increases. 

For strong shocks, a jet will be created after the shock wave impacts the interface, 
and therefore the Gilmore model is not applicable. The jet will penetrate to the 
opposite side of the interface with a speed as high as 2000 m s-I. The jet speed is 
almost independent of the initial gas cavity size, but depends on the applied shock 
strength. The gas within the cavity is not compressed seriously by the deformation 
of the cavity. Therefore, the gas pressure increase is small compared with the weak 
shock case. The stronger the applied shock, the higher the jet speed will be, and the 
sooner the gas cavity will collapse. 

The general pattern of the rarefaction and transmission of shock waves of the a 
cavity impacted by weak or strong shocks agrees very well with the numerical results 
presented by Grove & Menikoff (1990). They investigated the early stages of shock- 
interface interaction without studying the details of the collapse of the gas cavity. 
The shape of the collapsed gas cavity also qualitatively agrees with the experimental 
observations of Dear & Field (1987, 1988) and Bourne & Field (1990). 
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